Extensions 1→N→G→Q→1 with N=C2xHe3 and Q=C32

Direct product G=NxQ with N=C2xHe3 and Q=C32
dρLabelID
C3xC6xHe3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=C2xHe3 and Q=C32
extensionφ:Q→Out NdρLabelID
(C2xHe3):1C32 = C6xC3wrC3φ: C32/C3C3 ⊆ Out C2xHe354(C2xHe3):1C3^2486,210
(C2xHe3):2C32 = C6xHe3:C3φ: C32/C3C3 ⊆ Out C2xHe3162(C2xHe3):2C3^2486,212
(C2xHe3):3C32 = C2xHe3:C32φ: C32/C3C3 ⊆ Out C2xHe3549(C2xHe3):3C3^2486,217
(C2xHe3):4C32 = C2x3+ 1+4φ: trivial image549(C2xHe3):4C3^2486,254

Non-split extensions G=N.Q with N=C2xHe3 and Q=C32
extensionφ:Q→Out NdρLabelID
(C2xHe3).1C32 = C6xHe3.C3φ: C32/C3C3 ⊆ Out C2xHe3162(C2xHe3).1C3^2486,211
(C2xHe3).2C32 = C2xC9.He3φ: C32/C3C3 ⊆ Out C2xHe3543(C2xHe3).2C3^2486,214
(C2xHe3).3C32 = C2xC33:C32φ: C32/C3C3 ⊆ Out C2xHe3549(C2xHe3).3C3^2486,215
(C2xHe3).4C32 = C2xHe3.C32φ: C32/C3C3 ⊆ Out C2xHe3549(C2xHe3).4C3^2486,216
(C2xHe3).5C32 = C2xC9.2He3φ: C32/C3C3 ⊆ Out C2xHe3549(C2xHe3).5C3^2486,219
(C2xHe3).6C32 = C6xC9oHe3φ: trivial image162(C2xHe3).6C3^2486,253
(C2xHe3).7C32 = C2x3- 1+4φ: trivial image549(C2xHe3).7C3^2486,255

׿
x
:
Z
F
o
wr
Q
<